Time in cyber-physical systems

ESWEEK'16: TWELFTH EMBEDDED SYSTEM WEEK Pittsburgh Pennsylvania October, 2016(2016)

引用 25|浏览86
暂无评分
摘要
Many modern cyber-physical systems (CPS), especially industrial automation systems, require the actions of multiple computational systems to be performed at much higher rates and more tightly synchronized than is possible with ad hoc designs. Time is the common entity that computing and physical systems in CPS share, and correct interfacing of that is essential to flawless functionality of a CPS. Fundamental research is needed on ways to synchronize clocks of computing systems to a high degree, and on design methods that enable building blocks of CPS to perform actions at specified times. To realize the potential of CPS in the coming decades, suitable ways to specify distributed CPS applications are needed, including their timing requirements, ways to specify the timing of the CPS components (e.g. sensors, actuators, computing platform), timing analysis to determine if the application design is possible using the components, confident top-down design methodologies that can ensure that the system meets its timing requirements, and ways and methodologies to test and verify that the system meets the timing requirements. Furthermore, strategies for securing timing need to be carefully considered at every CPS design stage and not simply added on. This paper exposes these challenges of CPS development, points out limitations of previous approaches, and provides some research directions towards solving these challenges.
更多
查看译文
关键词
cyberphysical systems,industrial automation systems,CPS functionality,clock synchronization,distributed CPS applications,timing requirements,timing specification,CPS components,timing analysis,confident top-down design methodologies,CPS design stage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要