谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Targeted Dual pH-Sensitive Lipid ECO/siRNA Self-Assembly Nanoparticles Facilitate In Vivo Cytosolic sieIF4E Delivery and Overcome Paclitaxel Resistance in Breast Cancer Therapy.

Advanced healthcare materials(2016)

引用 38|浏览11
暂无评分
摘要
RNAi-mediated knockdown of oncogenes associated with drug resistance can potentially enhance the efficacy of chemotherapy. Here, we have designed and developed targeted dual pH-sensitive lipid-siRNA self-assembly nanoparticles, RGD-PEG(HZ)-ECO/siRNA, which can efficiently silence the oncogene, eukaryotic translation initiation factor 4E (eIF4E), and consequently resensitize triple-negative breast tumors to paclitaxel. The dual pH-sensitive function of these nanoparticles facilitates effective cytosolic siRNA delivery in cancer cells, both in vitro and in vivo. Intravenous injection of RGD-PEG(HZ)-ECO/siRNA nanoparticles (1.0 mg-siRNA/kg) results in effective gene silencing for at least one week in MDA-MB-231 tumors. In addition, treatment of athymic nude mice with RGD-PEG(HZ)-ECO/sieIF4E every 6 days for 6 weeks down-regulates the overexpression of eIF4E and resensitizes paclitaxel-resistant MDA-MB-231 tumors to paclitaxel, resulting in significant tumor regression at a low dose, with negligible side effects. Moreover, repeated injections of the RGD-PEG(HZ)-ECO/siRNA nanoparticles in immunocompetent mice result in minimal immunogenicity, demonstrating their safety and low toxicity. These multifunctional lipid/siRNA nanoparticles constitute a versatile platform of delivery of therapeutic siRNA for treating cancer and other human diseases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要