Characterization of three dimensional volumetric strain distribution during passive tension of the human tibialis anterior using Cine Phase Contrast MRI.

Journal of biomechanics(2016)

引用 12|浏览8
暂无评分
摘要
Intramuscular pressure correlates strongly with muscle tension and is a promising tool for quantifying individual muscle force. However, clinical application is impeded by measurement variability that is not fully understood. Previous studies point to regional differences in IMP, specifically increasing pressure with muscle depth. Based on conservation of mass, intramuscular pressure and volumetric strain distributions may be inversely related. Therefore, we hypothesized volumetric strain would decrease with muscle depth. To test this we quantified 3D volumetric strain in the tibialis anterior of 12 healthy subjects using Cine Phase Contrast Magnetic Resonance Imaging. Cine Phase Contrast data were collected while a custom apparatus rotated the subjects' ankle continuously between neutral and plantarflexion. A T2-weighted image stack was used to define the resting tibials anterior position. Custom and commercial post-processing software were used to quantify the volumetric strain distribution. To characterize regional strain changes, the muscle was divided into superior-inferior sections and either medial-lateral or anterior-posterior slices. Mean volumetric strain was compared across the sections and slices. As hypothesized, volumetric strain demonstrated regional differences with a decreasing trend from the anterior (superficial) to the posterior (deep) muscle regions. Statistical tests showed significant main effects and interactions of superior-inferior and anterior-posterior position as well as superior-inferior and medial-lateral position on regional strain. These data support our hypothesis and imply a potential relationship between regional volumetric strain and intramuscular pressure. This finding may advance our understanding of intramuscular pressure variability sources and lead to more reliable measurement solutions in the future.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要