谷歌浏览器插件
订阅小程序
在清言上使用

The Phosphotransfer Protein Cd1492 Represses Sporulation Initiation In Clostridium Difficile

INFECTION AND IMMUNITY(2016)

引用 30|浏览25
暂无评分
摘要
The formation of spores is critical for the survival of Clostridium difficile outside the host gastrointestinal tract. Persistence of C. difficile spores greatly contributes to the spread of C. difficile infection ( CDI), and the resistance of spores to antimicrobials facilitates the relapse of infection. Despite the importance of sporulation to C. difficile pathogenesis, the molecular mechanisms controlling spore formation are not well understood. The initiation of sporulation is known to be regulated through activation of the conserved transcription factor Spo0A. Multiple regulators influence Spo0A activation in other species; however, many of these factors are not conserved in C. difficile and few novel factors have been identified. Here, we investigated the function of a protein, CD1492, that is annotated as a kinase and was originally proposed to promote sporulation by directly phosphorylating Spo0A. We found that deletion of CD1492 resulted in increased sporulation, indicating that CD1492 is a negative regulator of sporulation. Accordingly, we observed increased transcription of Spo0A-dependent genes in the CD1492 mutant. Deletion of CD1492 also resulted in decreased toxin production in vitro and in decreased virulence in the hamster model of CDI. Further, the CD1492 mutant demonstrated effects on gene expression that are not associated with Spo0A activation, including lower sigD and rstA transcription, suggesting that this protein interacts with factors other than Spo0A. Altogether, the data indicate that CD1492 negatively affects sporulation and positively influences motility and virulence. These results provide further evidence that C. difficile sporulation is regulated differently from that of other endospore-forming species.
更多
查看译文
关键词
clostridium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要