Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel

SCIENTIFIC REPORTS(2016)

引用 24|浏览9
暂无评分
摘要
TREK-2, a member of two-pore-domain potassium channel family, regulates cellular excitability in response to diverse stimuli. However, how such stimuli control channel function remains unclear. Here, by characterizing the responses of cytosolic proximal C-terminus deletant (ΔpCt) and transmembrane segment 4 (M4)-glycine hinge mutant (G312A) to 2-Aminoethoxydiphenyl borate (2-APB), an activator of TREK-2, we show that the transduction initiated from pCt domain is allosterically coupled with the conformation of selectivity filter (SF) via the movements of M4, without depending on the original status of SF. Moreover, ΔpCt and G312A also exhibited blunted responses to extracellular alkalization, a model to induce SF conformational transition. These results suggest that the coupling between pCt domain and SF is bidirectional and M4 movements are involved in both processes. Further mechanistic exploration reveals that the function of Phe316, a residue close to the C-terminus of M4, is associated with such communications. However, unlike TREK-2, M4-hinge of TREK-1 only controls the transmission from pCt to SF, rather than SF conformational changes triggered by pH o changes. Together, our findings uncover the unique gating properties of TREK-2 and elucidate the mechanisms for how the extracellular and intracellular stimuli harness the pore gating allosterically.
更多
查看译文
关键词
Molecular neuroscience,Neurophysiology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要