EZH2 promotes invasion and metastasis of laryngeal squamous cells carcinoma via epithelial-mesenchymal transition through H3K27me3.

Biochemical and Biophysical Research Communications(2016)

Cited 39|Views11
No score
Abstract
Enhancer of Zeste Homolog 2(EZH2), which can change chromatin structure by tri-methylation of the 27th lysine of H3 in nucleosome histone (H3K27me3), is involved in different types of cancers. However, the role and mechanism underlying aberrant EZH2 expression in laryngeal squamous cells carcinoma (LSCC) remain unclear. In the present study, we found that down-regulation of EZH2 and H3K27me3 in LSCC cells (Hep-2 and SCC10A) resulted in an mesenchymal-epithelial transition(MET) like cell morphology and lower invasion in vitro, weakened tumor growth, intrahepatic and pulmonary metastasis in vivo. Furthermore, EZH2 promoted the epithelial-mesenchymal transition(EMT) process through down-regulation of Ca2+ dependent cell adhesion molecule E (E-cadherin) and up-regulation of H3K27me3 in vitro and in vivo. Moreover, E-cadherin was transcriptionally induced upon stable knockdown of EZH2, and quantitative chromatin immunoprecipitation(qChIP) analysis confirmed the depletion of H3K27me3 enrichment on E-cadherin promoter upon EZH2 knockdown in Hep-2 and SCC10A cells. In addition, the expression of EZH2 was positively correlated with that of H3K27me3 and both of them were inversely correlated with E-cadherin expression in human LSCC tissues. In summary, this study indicated that EZH2 promoted invasion and metastasis of LSCC via EMT through H3K27me3.
More
Translated text
Key words
EZH2,H3K27me3,Laryngeal squamous cells carcinoma,Metastasis,Epithelial-mesenchymal transition
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined