Neural Mechanism to Simulate a Scale-Invariant Future.

Neural Computation(2016)

引用 29|浏览50
暂无评分
摘要
Predicting the timing and order of future events is an essential feature of cognition in higher life forms. We propose a neural mechanism to nondestructively translate the current state of spatiotemporal memory into the future, so as to construct an ordered set of future predictions almost instantaneously. We hypothesize that within each cycle of hippocampal theta oscillations, the memory state is swept through a range of translations to yield an ordered set of future predictions through modulations in synaptic connections. Theoretically, we operationalize critical neurobiological findings from hippocampal physiology in terms of neural network equations representing spatiotemporal memory. Combined with constraints based on physical principles requiring scale invariance and coherence in translation across memory nodes, the proposition results in Weber-Fechner spacing for the representation of both past (memory) and future (prediction) time lines. We show that the phenomenon of phase precession of neurons in the hippocampus and ventral striatum has a direct cognitive correlate to future prediction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要