Clonal evolution of glioblastoma under therapy

NATURE GENETICS(2016)

引用 546|浏览12
暂无评分
摘要
Raul Rabadan, Antonio Iavarone, Gaetano Finocchiaro, Do-Hyun Nam and colleagues analyze longitudinal genomic and transcriptomic data from 114 patients with glioblastoma. They find that relapse-associated clones typically exist before diagnosis, that expression subtypes are not stable under therapy and that recurrence tumors harbor specific alterations in several genes, including LTBP4 and MGMT. Glioblastoma (GBM) is the most common and aggressive primary brain tumor. To better understand how GBM evolves, we analyzed longitudinal genomic and transcriptomic data from 114 patients. The analysis shows a highly branched evolutionary pattern in which 63% of patients experience expression-based subtype changes. The branching pattern, together with estimates of evolutionary rate, suggests that relapse-associated clones typically existed years before diagnosis. Fifteen percent of tumors present hypermutation at relapse in highly expressed genes, with a clear mutational signature. We find that 11% of recurrence tumors harbor mutations in LTBP4, which encodes a protein binding to TGF-β. Silencing LTBP4 in GBM cells leads to suppression of TGF-β activity and decreased cell proliferation. In recurrent GBM with wild-type IDH1, high LTBP4 expression is associated with worse prognosis, highlighting the TGF-β pathway as a potential therapeutic target in GBM.
更多
查看译文
关键词
CNS cancer,Transcriptomics,Personalized medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要