Collapsed Variational Inference for Sum-Product Networks.

ICML'16: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48(2016)

引用 49|浏览112
暂无评分
摘要
Sum-Product Networks (SPNs) are probabilistic inference machines that admit exact inference in linear time in the size of the network. Existing parameter learning approaches for SPNs are largely based on the maximum likelihood principle and are subject to overfitting compared to more Bayesian approaches. Exact Bayesian posterior inference for SPNs is computationally intractable. Even approximation techniques such as standard variational inference and posterior sampling for SPNs are computationally infeasible even for networks of moderate size due to the large number of local latent variables per instance. In this work, we propose a novel deterministic collapsed variational inference algorithm for SPNs that is computationally efficient, easy to implement and at the same time allows us to incorporate prior information into the optimization formulation. Extensive experiments show a significant improvement in accuracy compared with a maximum likelihood based approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要