Examination of Effects of Low-Frequency Ultrasound on Scleral Permeability and Collagen Network.

Ultrasound in medicine & biology(2016)

引用 8|浏览0
暂无评分
摘要
Delivery of therapeutics to the intraocular space or to targeted tissues in the posterior segment is challenging because of the structural and dynamic barriers surrounding the eye. Previously, we reported the feasibility of using ultrasound (US) irradiation to deliver macromolecules to the posterior segment of the eye via the transscleral route, which consists of sclera as the outermost anatomic barrier. In this study, we found that although ultrasound increases scleral permeability for macromolecules, the scleral collagen arrangement remains undisturbed. In an ex vivo experiment, protein permeation across the sclera was significantly enhanced by ultrasound in the stable cavitation regime. The scleral collagen network was further examined by second harmonic generation imaging. Quantitative image analysis techniques were adopted to examine the density, anisotropy and interlacing pattern of collagen fibers before and after ultrasound irradiation. Repeated ultrasound applications did not induce significant changes in the arrangement of collagen fibrils at 40 kHz with a spatial average temporal average intensity (ISATA) <1.8 W/cm2. These parameters correspond to a mechanical index (MI) below 0.8 in our setting. These data suggested that enhanced permeation of macromolecules across the sclera was achieved without disturbing the collagen network of the sclera. This evidence supports that low-frequency, low-intensity ultrasound is a tolerable approach to transscleral drug delivery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要