Capture of dengue viruses using antibody-integrated graphite-encapsulated magnetic beads produced using gas plasma technology.

MOLECULAR MEDICINE REPORTS(2016)

引用 7|浏览18
暂无评分
摘要
Despite significant advances in medicine, global health is threatened by emerging infectious diseases caused by a number of viruses. Dengue virus (DENV) is a mosquito-borne virus, which can be transmitted to humans via mosquito vectors. Previously, the Ministry of Health, Labour and Welfare in Japan reported the country's first domestically acquired case of dengue fever for almost 70 years. To address this issue, it is important to develop novel technologies for the sensitive detection of DENV. The present study reported on the development of plasma-functionalized, graphite-encapsulated magnetic nanoparticles (GrMNPs) conjugated with anti-DENV antibody for DENV capture. Radiofrequency wave-excited inductively-coupled Ar and ammonia gas plasmas were used to introduce amino groups onto the surface of the GrMNPs. The GrMNPs were then conjugated with an antibody against DENV, and the antibody-integrated magnetic beads were assessed for their ability to capture DENV. Beads incubated in a cell culture medium of DENV-infected mosquito cells were separated from the supernatant by applying a magnetic field and were then washed. The adsorption of DENV serotypes 1-4 onto the beads was confirmed using reverse transcription-polymerase chain reaction, which detected the presence of DENV genomic RNA on the GrMNPs. The methodology described in the present study, which employed the plasma-functionalization of GrMNPs to enable antibody-integration, represents a significant improvement in the detection of DENV.
更多
查看译文
关键词
graphite,antibody,gas plasma,virus concentration,dengue,virus capture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要