Polyelectrolyte/surfactant films spread from neutral aggregates.

SOFT MATTER(2016)

引用 49|浏览1
暂无评分
摘要
We describe a new methodology to prepare loaded polyelectrolyte/surfactant films at the air/water interface by exploiting Marangoni spreading resulting from the dynamic dissociation of hydrophobic neutral aggregates dispensed from an aqueous dispersion. The system studied is mixtures of poly(sodium styrene sulfonate) with dodecyl trimethylammonium bromide. Our approach results in the interfacial confinement of more than one third of the macromolecules in the system even though they are not even surface-active without the surfactant. The interfacial stoichiometry of the films was resolved during measurements of surface pressure isotherms in situ for the first time using a new implementation of neutron reflectometry. The interfacial coverage is determined by the minimum surface area reached when the films are compressed beyond a single complete surface layer. The films exhibit linear ripples on a length scale of hundreds of micrometers during the squeezing out of material, after which they behave as perfectly insoluble membranes with consistent stoichiometric charge binding. We discuss our findings in terms of scope for the preparation of loaded membranes for encapsulation applications and in deposition-based technologies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要