Disturbance-free BIST for loop characterization of DC-DC buck converters

VTS(2015)

引用 14|浏览36
暂无评分
摘要
Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to their high efficiency. Unfortunately, they are also subject to higher process variations jeopardizing stable operation of the power supply. This paper presents a technique to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation using a white noise based excitation and correlation. White noise excitation is generated via pseudo random disturbance at reference and PWM input of the converter with the test signal energy being spread over a wide bandwidth, below the converter noise and ripple floor. Test signal analysis is achieved by correlating the pseudo random input sequence with the output response and thereby accumulating the desired behavior over time and pulling it above the noise floor of the measurement set-up. An off-the-shelf power converter, LM27402 is used as the DUT for the experimental verification. Experimental results show that the proposed technique can estimate converter's natural frequency and Q-factor within ±2.5% and ±0.7% error margin respectively, over changes in load inductance and capacitance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要