Reactive synthesis without regret

Acta Inf.(2016)

引用 16|浏览404
暂无评分
摘要
Two-player zero-sum games of infinite duration and their quantitative versions are used in verification to model the interaction between a controller (Eve) and its environment (Adam). The question usually addressed is that of the existence (and computability) of a strategy for Eve that can maximize her payoff against any strategy of Adam. In this work, we are interested in strategies of Eve that minimize her regret, i.e. strategies that minimize the difference between her actual payoff and the payoff she could have achieved if she had known the strategy of Adam in advance. We give algorithms to compute the strategies of Eve that ensure minimal regret against an adversary whose choice of strategy is (1) unrestricted, (2) limited to positional strategies, or (3) limited to word strategies, and show that the two last cases have natural modelling applications. These results apply for quantitative games defined with the classical payoff functions 𝖨𝗇𝖿 , 𝖲𝗎𝗉 , 𝖫𝗂𝗆𝖨𝗇𝖿 , 𝖫𝗂𝗆𝖲𝗎𝗉 , and mean-payoff. We also show that our notion of regret minimization in which Adam is limited to word strategies generalizes the notion of good for games introduced by Henzinger and Piterman, and is related to the notion of determinization by pruning due to Aminof, Kupferman and Lampert.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要