Data-Driven Topological Motion Planning With Persistent Cohomology

Robotics: Science and Systems(2015)

引用 29|浏览13
暂无评分
摘要
In this work, we present an approach to topological motion planning which is fully data-driven in nature and which relies solely on the knowledge of samples in the free configuration space. For this purpose, we discuss the use of persistent cohomology with coefficients in a finite field to compute a basis which allows us to efficiently solve the path planning problem. The proposed approach can he used both in the case where a part of a configuration space is well approximated by samples and, more generally, with arbitrary filtrations arising from real-world data sets. Furthermore, our approach can generate motions in a subset of the configuration space specified by the sub- or superlevel set of a filtration function such as a cost function or probability distribution. Our experiments show that our approach is highly scalable in low dimensions and we present results on simulated PR2 arm motions as well as GPS trace and motion capture data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要