A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion

Expert Systems with Applications(2015)

引用 171|浏览146
暂无评分
摘要
A heuristic is proposed for initializing ABC population.An ensemble local search method is proposed to improve the convergence of TABC.Three re-scheduling strategies are proposed and evaluated.TABC is tested using benchmark instances and real cases from re-manufacturing.TABC compared against several state-of-the-art algorithms. This study addresses the scheduling problem in remanufacturing engineering. The purpose of this paper is to model effectively to solve remanufacturing scheduling problem. The problem is modeled as flexible job-shop scheduling problem (FJSP) and is divided into two stages: scheduling and re-scheduling when new job arrives. The uncertainty in timing of returns in remanufacturing is modeled as new job inserting constraint in FJSP. A two-stage artificial bee colony (TABC) algorithm is proposed for scheduling and re-scheduling with new job(s) inserting. The objective is to minimize makespan (maximum complete time). A new rule is proposed to initialize bee colony population. An ensemble local search is proposed to improve algorithm performance. Three re-scheduling strategies are proposed and compared. Extensive computational experiments are carried out using fifteen well-known benchmark instances with eight instances from remanufacturing. For scheduling performance, TABC is compared to five existing algorithms. For re-scheduling performance, TABC is compared to six simple heuristics and proposed hybrid heuristics. The results and comparisons show that TABC is effective in both scheduling stage and rescheduling stage.
更多
查看译文
关键词
Flexible job-shop scheduling,New job inserting,Artificial bee colony,Re-scheduling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要