Methods to load balance a GCR pressure solver using a stencil framework on multi- and many-core architectures

Periodicals(2015)

引用 4|浏览38
暂无评分
摘要
AbstractThe recent advent of novel multi- and many-core architectures forces application programmers to deal with hardware-specific implementation details and to be familiar with software optimisation techniques to benefit from new high-performance computing machines. Extra care must be taken for communication-intensive algorithms, which may be a bottleneck for forthcoming era of exascale computing. This paper aims to present a high-level stencil framework implemented for the EULerian or LAGrangian model (EULAG) that efficiently utilises multi- and many-cores architectures. Only an efficient usage of both many-core processors (CPUs) and graphics processing units (GPUs) with the flexible data decomposition method can lead to the maximum performance that scales the communication-intensive Generalized Conjugate Residual (GCR) elliptic solver with preconditioner.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要