Fat-Fast VG-RAM WNN: A high performance approach.

Neurocomputing(2016)

引用 6|浏览59
暂无评分
摘要
The Virtual Generalizing Random Access Memory Weightless Neural Network (VG-RAM WNN) is a type of WNN that only requires storage capacity proportional to the training set. As such, it is an effective machine learning technique that offers simple implementation and fast training – it can be made in one shot. However, the VG-RAM WNN test time for applications that require many training samples can be large, since it increases with the size of the memory of each neuron. In this paper, we present Fat-Fast VG-RAM WNNs. Fat-Fast VG-RAM WNNs employ multi-index chained hashing for fast neuron memory search. Our chained hashing technique increases the VG-RAM memory consumption (fat) but reduces test time substantially (fast), while keeping most of its machine learning performance. To address the memory consumption problem, we employ a data clustering technique to reduce the overall size of the neurons’ memory. This can be achieved by replacing clusters of neurons’ memory by their respective centroid values. With our approach, we were able to reduce VG-RAM WNN test time and memory footprint, while maintaining a high and acceptable machine learning performance. We performed experiments with the Fat-Fast VG-RAM WNN applied to two recognition problems: (i) handwritten digit recognition and (ii) traffic sign recognition. Our experimental results showed that, in both recognition problems, our new VG-RAM WNN approach was able to run three orders of magnitude faster and consume two orders of magnitude less memory than standard VG-RAM, while experiencing only a small reduction in recognition performance.
更多
查看译文
关键词
WNN,VG-RAM,Multi-index chained hashing,Data clustering,Traffic sign recognition,Handwritten digit recognition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要