Dual targeted nanocarrier for brain ischemic stroke treatment.

Journal of controlled release : official journal of the Controlled Release Society(2016)

Cited 109|Views29
No score
Abstract
Focal cerebral ischemia, known as stroke, causes serious long-term disabilities globally. Effective therapy for cerebral ischemia demands a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the ischemia area in brain. Here, we designed a novel neuroprotectant (ZL006) loaded dual targeted nanocarrier based on liposome (T7&SHp-P-LPs/ZL006) conjugated with T7 peptide (T7) and stroke homing peptide (SHp) for penetrating BBB and targeting ischemia area, respectively. Compared with non-targeting liposomes, T7&SHp-P-LPs/ZL006 could transport across BCEC cells and significantly enhance cellular uptake and reduce cells apoptosis of excitatory amino acid stimulated PC-12 cells. However, there was no significant difference in cellular uptake between SHp-modified and plain liposomes when PC-12 cells were incubated without excitatory amino acid. Besides, ex vivo fluorescent images indicated that DiR labeled T7&SHp-P-LPs could efficiently transport across BBB and mostly accumulated in ischemic region rather than normal cerebral hemisphere of MCAO rats. Furthermore, T7&SHp-P-LPs/ZL006 could enhance the ability of in vivo anti-ischemic stroke of MCAO rats. These results demonstrated that T7&SHp-P-LPs could be used as a safe and effective dual targeted nanocarrier for ischemic stroke treatment.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined