谷歌浏览器插件
订阅小程序
在清言上使用

Electron Paramagnetic Resonance Spectroscopy Investigation Of Radical Production By Gold Nanoparticles In Aqueous Solutions Under X-Ray Irradiation

Joan Chang, Ryan D Taylor,R Andrew Davidson,Arjun Sharmah,Ting Guo

JOURNAL OF PHYSICAL CHEMISTRY A(2016)

引用 37|浏览15
暂无评分
摘要
Nanomaterials can enhance the effect of X-rays, but the mechanisms of enhancement can be complicated. Electron paramagnetic resonance (EPR) was used here to shed light on enhancement mechanisms by detecting the originally proposed physical enhancement of the effect of Xrays by as-made large gold nanoparticles. Specifically spin trap reagent 5-tertbutoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO) was used to trap radicals produced in aqueous solutions under X-ray irradiation. Even though only BMPO hydroxyl adducts were detected at the time of EPR measurement, both hydroxyl and superoxide radicals were found to contribute to the enhancement. The measured total enhancement was 0.7-fold per weight percent (wp) of Au in water using unfiltered X-rays. The theoretically predicted physical enhancement is 0.49 fold per wp of gold in water. This information, together with scavenging experimental results and the fact that the G-values are close for both radicals, suggest that hydroxyl and superoxide radicals contributing almost equally to the total measured enhancement. Further, the enhancement was found to be linearly dependent on the amount of large gold nanoparticles in water and no additional radical was produced beyond the amount predicted by type 1 physical enhancement, indicating that hydroxyl or superoxide radicals were not produced via catalytic pathways.
更多
查看译文
关键词
Electron Spin Resonance,Scanning Electrochemical Microscopy,Bismuth-Coated Electrodes,Pulsed EPR Spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要