Insight into Membrane Selectivity of Linear and Branched Polyethylenimines and Their Potential as Biocides for Advanced Wound Dressings.

Acta Biomaterialia(2016)

引用 35|浏览12
暂无评分
摘要
We report here structure-property relationship between linear and branched polyethylene imines by examining their antimicrobial activities against wide range of pathogens. Both the polymers target the cytoplasmic membrane of bacteria and yeasts, eliciting rapid microbicidal properties. Using multiscale molecular dynamic simulations, we showed that, in both fully or partially protonated forms LPEI discriminates between mammalian and bacterial model membranes whereas BPEI lacks selectivity for both the model membranes. Simulation results suggest that LPEI forms weak complex with the zwitterionic lipids whereas the side chain amino groups of BPEI sequester the zwitterionic lipids by forming tight complex. Consistent with these observations, label-free cell impedance measurements, cell viability assays and high content analysis indicate that BPEI is cytotoxic to human epithelial and fibroblasts cells. Crosslinking of BPEI onto electrospun gelatin mats attenuate the cytotoxicity for fibroblasts while retaining the antimicrobial activity against Gram-positive and yeasts strains. PEI crosslinked gelatin mats elicit bactericidal activity by contact-mediated killing and durable to leaching for 7days. The potent antimicrobial activity combined with enhanced selectivity of the crosslinked ES gelatin mats would expand the arsenel of biocides in the management of superficial skin infections. The contact-mediated microbicidal properties may avert antimicrobial resistance and expand the diversity of applications to prevent microbial contamination.
更多
查看译文
关键词
Molecular dynamics,Membrane selectivity,Polyethylenimine,Electrospinning,Contact-mediated antibacterials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要