Chrome Extension
WeChat Mini Program
Use on ChatGLM

Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells.

Molecular and cellular endocrinology(2016)

Cited 26|Views13
No score
Abstract
Successful fertilization depends upon proper cumulus-oocyte complex (COC) expansion. Synthesized by hyaluronan synthases (HASs), hyaluronan forms the backbone of the COC matrix and plays a critical role in COC expansion. This study investigated the effects and mechanisms of ovarian BMPs on HAS expression and hyaluronan production in human granulosa cells. Treatment with BMP4, BMP6, BMP7 or BMP15 induced differing levels of noncanonical SMAD2/3, but equal levels of canonical SMAD1/5/8, phosphorylation which were mirrored by differing levels of HAS2 up-regulation and hyaluronan production. The effects of BMP4 and BMP15 on HAS2 mRNA were partially reversed by knockdown of SMAD3, and blocked by knockdown of SMAD2+SMAD3 or SMAD4. BMP4-induced SMAD2/3 phosphorylation and HAS2 mRNA up-regulation were mediated by both BMP and activin/transforming growth factor-β type I receptors. Our results suggest differential activation of noncanonical SMAD2/SMAD3 signaling by BMPs causes disproportionate induction of HAS2 expression and hyaluronan production in immortalized human granulosa cells.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined