Nanoporous Silicon-Based Ammonia-Fed Fuel Cells

Materials Sciences and Applications(2014)

Cited 3|Views12
No score
Abstract
The objective of the paper is to report results on fabrication, structural, morphological and performance characteristics of novel TiO2/PS/Si, Au/TiO2/PS/Si and Au/PS/Si direct ammonia fuel cells (DAFC) using nanoporous silicon (PS) as proton conducting membrane (instead of traditional polymer Nafion membrane) and TiO2, Au/TiO2 or Au as catalyst layer. Porous silicon layers have been prepared by electrochemical modification of silicon substrates. Films containing titanium dioxide are more efficient catalysts for hydrogen production from ammonia solution. The Au/ TiO2/PS/Si cell exhibited the open circuit voltage 0.87 V and performance of 1.6 mW/cm2 with 50% ammonia solution as fuel at room temperature. Mechanisms of proton transport in nanoporous silicon membrane and generation of electricity in DAFC have been considered. Advantages of investigated direct ammonia fuel cells consist in simplicity of fabrication technology, which can be integrated into standard silicon micro fabrication processes and operation of cells at room temperature. The work demonstrates that the PS based fuel cells have potential for portable applications.
More
Translated text
Key words
power density,catalyst
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined