Coupling sky images with three-dimensional radiative transfer models: a new method to estimate cloud optical depth

F. A. Mejia, B. Kurtz, K. Murray, L. M. Hinkelman,M. Sengupta, Y. Xie,J. Kleissl

Atmospheric Measurement Techniques Discussions(2015)

引用 1|浏览2
暂无评分
摘要
Abstract. A method for retrieving cloud optical depth (τc) using a ground-based sky imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a 3-D Radiative Transfer Model (3DRTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλ(τc, θ0, ϑs, ϑz) and the red-blue ratio, RBR(τc, θ0, ϑs, ϑz) are retrieved from the 3DRTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeas(ϑs, ϑz), in addition to RBRmeas(ϑs, ϑz) to obtain a unique solution for τc. The RRBR method is applied to images taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and validated against measurements from a microwave radiometer (MWR); output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements. A τc RMSE of 5.6 between the Min method and the USI are observed. The MWR and USI have an RMSE of 2.3 which is well within the uncertainty of the MWR. An RMSE of 0.95 between the USI and DNI retrieved τc is observed. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要