A low-luminosity type-1 QSO sample; III. Optical spectroscopic properties and activity classification

ASTRONOMY & ASTROPHYSICS(2015)

引用 6|浏览7
暂无评分
摘要
Context. We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z <= 0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. Aims. In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Methods. Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. Results. A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requiremnts. As expected in NLR of broad line AGNs, the [Sii]-based electron density values range between 100 and 1000 N-e/cm(3). Using the optical characteristics of Populations A and B, we find that 50% of our sources with H beta broad emission are consistent with the radio-quiet sources definition. The remaining sources could be interpreted as low-luminosity radio-loud quasar. The BPT-based classification renders an AGN/Seyfert activity between 50 to 60%. For the remaining sources, the possible starburst contribution might control the LINER and HII classification. Finally, we discuss the aperture effect as responsible for the differences found between data sets, although variability in the BLR could play a significant role as well.
更多
查看译文
关键词
galaxies: starburst,galaxies: active,galaxies: Seyfert,quasars: emission lines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要