谷歌浏览器插件
订阅小程序
在清言上使用

Role Of Deltal6her2 Splice Variant In Her2-Driven Tumor Progression And Response To Targeted Therapy

CANCER RESEARCH(2012)

引用 0|浏览18
暂无评分
摘要
Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL We reported that the splice variant of human HER2 lacking exon 16 (delta16HER2) represents a highly penetrating HER2 oncogenic alteration identified in human primary breast tumor specimens and is able to influence the response to Trastuzumab. This HER2 variant forms covalent cysteine bonds that generate constitutively active homodimers, thereby activating multiple oncogenic downstream signaling pathways that we recently found to be mediated through activated Src kinase. To examine the ability of delta16HER2 to transform mammary epithelium in vivo and to monitor delta16HER2-driven tumorigenesis in live mice, we generated a FVB transgenic mouse model for the human delta16HER2 isoform. Transgenic female mice developed multifocal mammary tumors with a rapid onset starting at about 12 weeks of age and progressively thereafter, clearly pointing to the candidacy of the delta16HER2 isoform as the transforming form of the human HER2 oncoprotein. Histological and immunohistochemical analysis (IHC) of primary mammary nodules revealed a population of polygonal cells with classical epithelia-like aspects distinctly expressing HER2 and also a population of smaller spindle-shaped cells arranged in fascicles with lower levels of HER2 expression, suggesting the onset of the epithelial-to-mesenchymal transition (EMT). Consistent with these findings, FACS analysis of delta16HER2-positive tumor cells immunomagnetically purified from disaggregated transgenic primary tumors indicated the increased mean fluorescence intensity of HER2 staining with increasing tumor cell size. IHC analysis of the lung metastases that had formed in the majority of female mice revealed monomorphic and classical epithelial tumor cells homogeneously expressing high levels of delta16HER2. FACS and IHC analyses confirmed the lower binding efficacy of Trastuzumab to delta16HER2-overexpressing primary tumor cells cultured both under bidimensional (2D) and tridimensional (3D) conditions as compared to monoclonal reagents directed to different HER2 extracellular domain epitopes. Experiments in both primary and metastatic in vitro and in vivo delta16HER2-positive models are in progress to determine whether delta16HER2-driven tumor aggressiveness and Trastuzumab susceptibility depend not only on genetic changes intrinsic to the tumor cell, i.e., the EMT process, but also on extrinsic tumor surrounding microenvironment-related factors such as an imbalance between extracellular and intracellular pH, redox state and hypoxia. Preliminary FACS and IHC analyses indicate that delta16HER2-positive primary tumor cells are reactive for known epithelial markers as EpCAM, E-cadherin- and ck-18 and, a small subset of these mammary tumor cells, also stain positive for the mesenchymal differentiation markers vimentin, N-cadherin and ck14 significantly indicating an active EMT program. Supported by AIRC and Ministry of Health Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 916. doi:1538-7445.AM2012-916
更多
查看译文
关键词
delta16her2 splice variant,tumor progression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要