Pharmacological Inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis in Mice Cardiac Fibroblast and Post-Myocardial-Infarction Models.

G P Fan,Weiwei Wang, Hongbin Zhao,Lei Cai,P D Zhang, Z H Yang,Jun Zhang,Xiaowei Wang

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY(2015)

引用 43|浏览10
暂无评分
摘要
Background: To investigate the role of focal adhesion kinase (FAK)-mediated signaling in hypoxia-induced cardiac fibroblasts (CFs) differentiation and cardiac fibrosis post-myocardial infarction (MI) on a mice model. Methods: CFs of neonatal C57BL/6 mice were treated under normoxic, hypoxic, or hypoxic+PP2 (known as a Src kinase family inhibitor) conditions. Gene expressions of FAK, alpha-smooth muscle actin (alpha-SMA) and collagen type I alpha 1 (Col1 alpha 1), or alpha-SMA and vimentin levels were performed by RT-PCR and immunofluorescence staining, respectively. Thirty mice were surgically treated into Sham (n=7) and MI (n=23) groups; and FAK inhibitor PF-562271 was given to six survivor MI mice (as PF group, from 15 survivors). Heart function and collagenous tissues were examined by echocardiography, as well as by Masson's trichrome and Sirius red staining, respectively. Type I collagen, FAK protein, mTOR, ERK1/2, AKT, P70S6K and phospho-FAK levels were also analyzed. Results: FAK inhibition with PP2 significantly decreased CFs differentiation and collagen synthesis under hypoxia treatment. In vivo, PF-562271 treatment resulted in fibrosis attenuation; however, deteriorated heart function of MI mice could not be significantly improved. PF-562271 may affect phosphom-TOR (p<0.05), phospho-ERK1/2 (p<0.01), phospho-AKT (p<0.001) and phospho-P70S6K (p<0.05) to exert its benefits. FAK can be activated either under hypoxia in CFs or MI in a mouse model to promote fibrosis. However, pharmacological inhibition of FAK can attenuate fibrosis response. Conclusion: This study provides novel evidence that FAK inhibition may become a promising pharmaceutical strategy to attenuate fibrosis post-MI. Copyright (C) 2015 S. Karger AG, Basel
更多
查看译文
关键词
Focal adhesion kinase,Cardiac fibroblasts,Cardiac fibrosis,PF-562,271,Myocardial infarction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要