Geologic pattern recognition from seismic attributes: Principal component analysis and self-organizing maps

INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION(2015)

引用 109|浏览2
暂无评分
摘要
Interpretation of seismic reflection data routinely involves powerful multiple-central-processing-unit computers, advanced visualization techniques, and generation of numerous seismic data types and attributes. Even with these technologies at the disposal of interpreters, there are additional techniques to derive even more useful information from our data. Over the last few years, there have been efforts to distill numerous seismic attributes into volumes that are easily evaluated for their geologic significance and improved seismic interpretation. Seismic attributes are any measurable property of seismic data. Commonly used categories of seismic attributes include instantaneous, geometric, amplitude accentuating, amplitude-variation with offset, spectral decomposition, and inversion. Principal component analysis (PCA), a linear quantitative technique, has proven to be an excellent approach for use in understanding which seismic attributes or combination of seismic attributes has interpretive significance. The PCA reduces a large set of seismic attributes to indicate variations in the data, which often relate to geologic features of interest. PCA, as a tool used in an interpretation workflow, can help to determine meaningful seismic attributes. In turn, these attributes are input to self-organizing-map (SOM) training. The SOM, a form of unsupervised neural networks, has proven to take many of these seismic attributes and produce meaningful and easily interpretable results. SOM analysis reveals the natural clustering and patterns in data and has been beneficial in defining stratigraphy, seismic facies, direct hydrocarbon indicator features, and aspects of shale plays, such as fault/fracture trends and sweet spots. With modern visualization capabilities and the application of 2D color maps, SOM routinely identifies meaningful geologic patterns. Recent work using SOM and PCA has revealed geologic features that were not previously identified or easily interpreted from the seismic data. The ultimate goal in this multiattribute analysis is to enable the geoscientist to produce a more accurate interpretation and reduce exploration and development risk.
更多
查看译文
关键词
interpretation,neural networks,visualization,3d
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要