Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems

Journal of Marine Systems(2015)

引用 43|浏览30
暂无评分
摘要
Understanding how external pressures impact ecosystem structure and functioning is essential for ecosystem-based approaches to fisheries management. We quantified the relative effects of fisheries exploitation and environmental conditions on ecological indicators derived from two different data sources, fisheries catch data (catch-based) and fisheries independent survey data (survey-based) for 12 marine ecosystems using a partial least squares path modeling approach (PLS-PM). We linked these ecological indicators to the total biomass of the ecosystem. Although the effects of exploitation and environmental conditions differed across the ecosystems, some general results can be drawn from the comparative approach. Interestingly, the PLS-PM analyses showed that survey-based indicators were less tightly associated with each other than the catch-based ones. The analyses also showed that the effects of environmental conditions on the ecological indicators were predominantly significant, and tended to be negative, suggesting that in the recent period, indicators accounted for changes in environmental conditions and the changes were more likely to be adverse. Total biomass was associated with fisheries exploitation and environmental conditions; however its association with the ecological indicators was weak across the ecosystems. Knowledge of the relative influence of exploitation and environmental pressures on the dynamics within exploited ecosystems will help us to move towards ecosystem-based approaches to fisheries management. PLS-PM proved to be a useful approach to quantify the relative effects of fisheries exploitation and environmental conditions and suggest it could be used more widely in fisheries oceanography.
更多
查看译文
关键词
Ecological indicators,Environmental conditions,Fisheries exploitation,Marine ecosystems,Partial least squares path modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要