0150: PDZ domain proteins interacting with Nav1.5 differentially regulate Nav1.5 channel pools in mouse cardiomyocytes

Archives of Cardiovascular Diseases Supplements(2014)

Cited 23|Views17
No score
Abstract
The cardiac sodium channel NaV1.5 initiates the action potential (AP) and is essential for conduction. The last three residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif (SIV) that interacts with PDZ proteins such as syntrophin proteins and SAP97 defining distinct subsets of NaV1.5 multi-protein complexes, respectively at the lateral membrane and the intercalated discs (ID) of cardiomyocytes. Previous results with dystrophin-deficient mice showed that disruption of the dystrophin-syntrophin macromolecular complex impairs excitability and impulse propagation by reducing the expression of NaV1.5 and syntrophin at the lateral membrane of cardiomyocytes. Recently, we investigated the in vivo role of the NaV1.5 SIV motif by characterizing mice bearing a truncation of this motif (ΔSIV). Western blots of ΔSIV hearts displayed reduced levels of NaV1.5, which corresponded to a 35% decrease in cardiomyocyte wholecell INa and AP upstroke velocity. Immunostainings revealed a specific loss of NaV1.5 channels in ΔSIV cardiomyocytes at lateral membranes concomitant to a 60% decrease in INa recorded at the lateral membrane. However, NaV1.5 expression at ID and T-tubules was not altered. No INa decrease was observed at the ID. Epicardial mapping of ΔSIV hearts showed decreased conduction velocity that manifested as prolongation of the QRS interval in ECGs. When SAP97 expression was constitutively suppressed in the heart of knock-out mice, INa and AP maximal upstroke velocity were unchanged. However, AP duration was greatly increased, suggesting that the expression and function of other ion channels is modified. These data reflect the in vivo significance of the PDZ-domain-binding SIV motif in correct expression of NaV1.5 channels at the lateral membrane and underline the functional role of lateral NaV1.5 channels in cardiac conduction. In addition, the results confirm the existence of distinct pools of NaV1.5 channels within the cardiomyocytes and suggest a complex regulation and organization of the NaV1.5 pool at the ID, where compensatory mechanisms could be developped when SAP97 expression is constitutively suppressed.
More
Translated text
Key words
pdz,proteins
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined