谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Three-dimensional (3-D) fluorescence spectroscopy analysis of the fluorescent dissolved organic matter released by the marine toxic dinoflagellate Alexandrium catenella exposed to metal stress by zinc or lead.

JOURNAL OF PHYCOLOGY(2014)

引用 12|浏览3
暂无评分
摘要
We investigated the effects of zinc or lead on growth and on exudation of fluorescent dissolved organic matter (FDOM) by the marine toxic dinoflagellate Alexandrium catenella (Whedon & Kofoid) Balech. The species was exposed to increasing free zinc (1.34 × 10(-7) M-3.98 × 10(-6) M) or lead (5.13 × 10(-9) M-1.82 × 10(-7) M) concentra-tions. Low metal levels ([Zn(2+) ] = 1.34 × 10(-7) M; [Pb(2+) ] = 5.13 × 10(-9) M) had no effect on cell growth. Toxic effects were observed from higher metal contamination ([Zn(2+) ] = 3.98 × 10(-6) M; [Pb(2+) ] = 6.54 × 10(-8) M), as a conversion of vegetative cells into cysts. Analysis of the released FDOM by three-dimensional (3-D) fluorescence spectroscopy was achieved, using the parallel factor analysis (PARAFAC). The PARAFAC modeling revealed four components associated with two contributions: one related to the biological activity; the other linked to the organic matter decomposition in the culture medium. The C1 component combined a tryptophan peak and characteristics of humic substances, whereas the C2 component was considered as a tryptophan protein fluorophore. The two others C3 and C4 components were associated with marine organic matter production. Relea-sed fluorescent substances were induced by low ([Zn(2+) ]= 1.34 × 10(-7) M; [Pb(2+) ] = 5.13 × 10(-9) M) and moderate ([Zn(2+) ] = 6.21 × 10(-7) M; [Pb(2+) ] = 2.64× 10(-9) M) metal concentrations, suggesting the activation of cellular mechanisms in response to metal stress, to exudate FDOM that could complex metal cations and reduce their toxicity toward A. catenella cells.
更多
查看译文
关键词
3-D fluorescence spectroscopy,A,lexandrium catenella,exudation,fluorescent dissolved organic matter,PARAFAC,trace metals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要