Cadmium fractions in an acid sandy soil and Cd in soil solution as affected by plant growth

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE(2014)

Cited 10|Views13
No score
Abstract
In a previous experiment, plants were able to immobilize or solubilize Cadmium (Cd) in a sandy acid soil enriched with 40 mu mol Cd kg(-1), because Cd solution concentration was decreased by maize (Zea mays) and sunflower (Helianthus annuus), and increased by flax (Linum usitatissimum L. ssp. usitatissimum) and spinach (Spinacia oleracea). It is assumed that the equilibrium with Cd fractions in the soil solid phase and the chemical form of Cd in the soil solution were affected. In the present study, the effect of the four plant species mentioned above on Cd binding in soil was investigated by means of a fractionation of soil Cd with a sequential extraction of seven steps. The seven fractions of Cd are operationally defined by the extraction sequence that follows the order of increasing acidity with extractants of different complexing and redox properties. In the unplanted soil, Cd was predominantly present in the exchangeable Fraction I (F. I) and easily mobilizable Fraction II (F. II) (64%). Significant concentrations of Cd were found in F. III (occluded in Mn oxides; 22%) and F. IV (organically bound; 10%). Fractions V (occluded in poorly crystalline Fe oxides), F. VI (occluded in well crystallized Fe oxides), and F. VII (residual fraction) amounted to less than 5% of the total soil Cd concentration. The plants changed the binding of Cd in soil in a different manner. All plants decreased F. I, but F. II was increased by maize and spinach, decreased by flax or remained unaffected by sunflower. Fraction III was not affected by maize and flax, but decreased by sunflower and spinach, and F. IV was not affected by sunflower and spinach, but was increased by maize and flax. These changes of Cd fractions were not related to the changes the plants had caused in total Cd or Cd2+ concentration of the soil solution. These results show that plant species differ in how they affect Cd binding to the soil solid phase, but this effect is not related to how they affect Cd in soil solution. The mechanisms by which plants affect the relationship between the soil solid and liquid phase are still unclear.
More
Translated text
Key words
sequential extraction,maize,sunflower,flax,spinach
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined