Electrochemical behaviour of stainless steel in PWR primary coolant conditions: Effects of radiolysis

Journal of Nuclear Materials(2011)

引用 22|浏览3
暂无评分
摘要
Few data are available in the literature on the role of the water radiolysis on the corrosion of stainless steel core components in PWR operating conditions (300 degrees C, 155 bar). The present approach uses a high energy proton beam to control the production of radiolytic species at the interface between a stainless steel sample and water in a high temperature and high pressure (HP-HT) electrochemical cell working in the range 25 degrees C/1 bar-300 degrees C/90 bar. The cell is designed to record the free corrosion potential of the AISI 316L/water interface mounted in line with a cyclotron delivering the proton beam. The evolution of the potential is compared before, during and after the proton irradiation. The first results are obtained with an aqueous solution containing boron, lithium and dissolved hydrogen, as in PWR primary coolant circuit. The stainless steel/water interfaces are irradiated between 25 degrees C and 300 degrees C with protons emerging at 22 MeV at the interface. The flux is varied by five orders of magnitude, from 6.6 x 10(11) to 6.6 x 10(15) H+ m(-2) s(-1). The evolution of the free corrosion potential is highly dependent on the temperature and/or pressure. For a given temperature and pressure, it evolves with the flux and the ageing of the AISI 316L/water interfaces. An important role of the temperature of irradiation on the electrochemical response was observed. These results give a better understanding of the role of radiolysis on stainless steel corrosion in high temperature conditions. (C) 2011 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
high pressure,operant conditioning,aqueous solution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要