Surface interactions of monomethylarsonic acid with hematite nanoparticles studied using ATR-FTIR: adsorption and desorption kinetics

CANADIAN JOURNAL OF CHEMISTRY(2015)

Cited 10|Views1
No score
Abstract
Monomethylarsonic acid (MMA) is an organoarsenical compound which, along with dimethylarsinic acid (DMA), poses health and environmental concerns. Little is known about the surface chemistry of MMA at the molecular level with materials relevant to geochemical environments and industrial sectors. We report the structure of MMA surface complexes and the adsorption/desorption kinetics of MMA to and from hematite as a model for reactive iron-containing materials commonly found in geosorbents and arsenic-removal technologies. Attenuated total internal reflectance Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the surface interactions at the molecular level. Spectra of adsorbed MMA(MMA(ads)) were collected as a function of time and aqueous-phase concentration. Values for the apparent rates of adsorption and desorption were extracted from experimental data at pH 7 as a function of spectral components during the initial times of surface interactions (0-5 min). Results showed that MMA adsorbs on hematite nanoparticles with rates 1.3 to 1.6 times slower than arsenate. The desorption of MMA(ads) by hydrogen phosphate from hematite surfaces is 2x faster than arsenate, and proceeds with an overall nonunity order, suggesting the existence of more than one type of surface complex at equilibrium. Also, hydrogen phosphate leads to the desorption of about 67% of MMA(ads) compared with 26% of surface arsenate. Adsorption kinetics for aqueous hydrogen phosphate were also investigated in the absence and presence of surface arsenic and followed this order: fresh hematite > MMA/hematite >= iAs(V)/hematite. From this study, it can be inferred that, on average, the presence of the methyl group in MMA results in weaker surface interactions with hematite relative to arsenate under neutral pH because of the simultaneous formation of mono- and bidentate MMA complexes compared with predominantly bidentate complexes for arsenate.
More
Translated text
Key words
methylated arsenicals,geosorbents,adsorption kinetics,desorption kinetics,ATR-FTIR
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined