Summary of Data from the Fifth Computational Fluid Dynamics Drag Prediction Workshop

JOURNAL OF AIRCRAFT(2014)

引用 103|浏览7
暂无评分
摘要
Results from the Fifth AIAA Computational Fluid Dynamics Drag Prediction Workshop are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. This workshop focused on force/moment predictions for the NASA Common Research Model wing-body configuration, including a grid refinement study and an optional buffet study. The grid refinement study used a common grid sequence derived from a multiblock topology structured grid. Six levels of refinement were created, resulting in grids ranging from 0.64 x 10(6) to 138 x 10(6) hexahedra, a much larger range than is typically seen. The grids were then transformed into structured overset and hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same basic cloud of points. This unique collection of grids was designed to isolate the effects of grid type and solution algorithm by using identical point distributions. This study showed reduced scatter and standard deviation from previous workshops. The second test case studied buffet onset at M = 0.85 using the medium grid (5.1 x 10(6) nodes) from the sequence described earlier. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Some solutions exhibited a large side of body separation bubble that was not observed in the wind-tunnel results. An optional third case used three sets of geometry, grids, and conditions from the Turbulence Model Resource website prepared by the Turbulence Model Benchmarking Working Group. These simple cases were intended to help identify potential differences in turbulence model implementation. Although a few outliers and issues affecting consistency were identified, the majority of participants produced consistent results.
更多
查看译文
关键词
Fluid Mechanics,CFD Simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要