Analysis of the charged particle radiation effect for a CubeSat transiting from Earth to Mars

Current Applied Physics(2014)

引用 4|浏览3
暂无评分
摘要
This paper presents a computational estimation of the total ionizing dose from protons and electrons in the Earth's magnetosphere and interplanetary space for a hypothetical CubeSat transiting from Earth to Mars. An initial hyperbolic escape of the spacecraft from Earth's gravitation is assumed, followed by an elliptical transfer from Earth to Mars under the Sun's gravitation. The rapid traversal of the Earth's radiation belt yields a smaller ionizing dose, whereas high-energy solar protons in the interplanetary space have the greatest effect on the ionizing dose during the transfer between the planets. Variation in the heliocentric distance of the spacecraft is considered in the calculation. Calculation of the shielding distributions with Geant4 and the transport of the ionizing particles across the obtained distributions yields an estimation of the total ionizing dose as a function of position within the spacecraft as well as statistical confidence levels. With a moderate confidence level, this calculation shows that a practical exploration of Mars with a CubeSat is possible in terms of the expected total ionizing dose.
更多
查看译文
关键词
CubeSat,Mars,Total ionizing dose,Solar protons,Geant4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要