Inhibition of LSD1 by Pargyline inhibited process of EMT and delayed progression of prostate cancer in vivo

Biochemical and Biophysical Research Communications(2015)

引用 56|浏览30
暂无评分
摘要
Recently, lysine-specific demethylase 1 (LSD1) was identified as the first histone demethylase. LSD1 interacted with androgen receptor (AR) and promoted androgen-dependent transcription of target genes, such as PSA, by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9). Meanwhile, the phenomenon of epithelial–mesenchymal transition (EMT) had received considerable attention in tumor recurrence and metastasis. This study examined the effect of Pargyline (an inhibitor of LSD1) on the process of EMT in vitro and in vivo. SCID mice were injected subcutaneously with LNCap cells. Pargyline was given intraperitoneally or not after castration (implemented with Bilateral orchidectomy), then PSA levels in serum and tumor were determined to assess time to androgen-independent progression. The results showed that LSD1 expression was up-regulated when PCa progressed to Castration Resistant Prostate Cancer (CRPC). Pargyline reduced LNCap cells migration and invasion ability, and inhibited the process of EMT by up-regulating expression of E-cadherin, and down-regulating expressions of N-cadherin and Vimentin in vitro and in vivo. Although, Pargyline did not change the level of AR, it reduced PSA expression both in vitro and in vivo. Furthermore, Pargyline delayed prostate cancer transition from androgen-dependent to androgen-independent state (CRPC). These findings indicated that inhibition of LSD1 might be a promise adjunctive therapy with androgen deprivation therapy (ADT) for locally advanced or metastatic prostate cancer.
更多
查看译文
关键词
LSD1,Pargyline,Epithelial–mesenchymal transition,Androgen deprivation therapy,Castration resistant prostate cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要