Type-II Superlattices and Variable Overlap Superlattices in Total Internal Reflection Switches for the Longwave Infrared

International Journal of Nonlinear Optical Physics(2012)

引用 4|浏览1
暂无评分
摘要
We derive explicit criteria for the properties required of a semiconductor nonlinear medium suitable for use in all-optical switching devices employing total internal reflection. Transmission as a function of laser intensity and film thickness has been calculated using a realistic model for penetration of the evanescent beam under TIR conditions. Requirements based on these results include a large nonlinear refractive index, large index change at saturation and small absorption coefficient. We show that unlike previously-studied semimetals and narrow-gap semiconductors, Type-II superlattices such as InAs-GaSb and variable-overlap superlattices (variants of Type-II which include a spacer between the layer containing the conduction-band minimum and that containing the valence band maximum) such as InAs-AlSb-GaSb hold prospects for satisfying all of these requirements simultaneously. As the free carrier lifetime will have a crucial influence on device performance, we have initiated a systematic experimental study of electron-hole recombination in InAs-based superlattices. From degenerate and nondegenerate four-wave mixing experiments, we have also determined nonlinear optical coefficients as a function of difference frequency and intensity. An InAs-GaSb superlattice has been found to display a refractive index change of ≈ 0.1, as well as device figures of merit which slightly surpasses any previously reported for weakly-saturating nonlinearities at CO 2 wavelengths. It is anticipated that future experiments on Type-II superlattices with longer lifetimes may yield nearly two orders of magnitude additional improvement in the nonlinear refractive index.
更多
查看译文
关键词
figure of merit,four wave mixing,infrared,valence band,nonlinear optics,superlattices,indexation,satisfiability,total internal reflection,optical switch,absorption coefficient,refractive index
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要