A probabilistic framework for nutrient uptake length

Theoretical Ecology(2012)

引用 3|浏览1
暂无评分
摘要
The nutrient uptake length, the average displacement of a nutrient in a stream before being taken up by the biota, is an important quantity to characterize and compare streams and rivers, or to quantify certain aspects of their related ecosystems. This concept has been widely used for almost 30 years now, and uptake lengths have been estimated for several nutrients in many systems, but it also suffers from a number of limitations, one of them being the requirement of a spatially homogeneous stream or river. We combine recently advocated, transport-based models of stream processes with current concepts of dispersal theory into a novel framework for nutrient uptake length. The framework is based on the theory for dispersal kernels in terrestrial systems, where the entire distribution of dispersal distances is calculated and not only the average. Within this framework, we can re-derive all previous results and formulae for uptake length, and we can include spatially heterogeneous stream environments. In addition, we propose a number of new characteristic quantities that can complement nutrient uptake length when evaluating the health of a stream system or the impact of a source of nutrients. We illustrate our method with two examples of spatially non-homogeneous streams: point-source input of nutrients (e.g., wastewater treatment plant) and diffuse lateral input (e.g., agricultural run-off), and we show how to measure the relative contribution of the two sources to the uptake length and other characteristics.
更多
查看译文
关键词
Stream ecology, Nutrient uptake length, Spatial heterogeneity, Point and diffuse input, Retention, Rivers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要