The impact of off-site land use energy intensity on the overall life cycle land use energy intensity for utility-scale solar electricity generation technologies

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY(2015)

引用 16|浏览1
暂无评分
摘要
Estimates of the amount of land used for a defined amount of utility-scale electricity generation in the solar power industry, referred to as solar land use energy intensity (LUEI), are important to decision makers for evaluating the environmental impact of energy technology choices. In general, solar energy tends to have a larger on-site LUEI than that of fossil fuels because the energy generated per square meter of power plant area is much lower. Unfortunately, there are few studies that quantify the off-site LUEI for utility-scale solar energy, and of those that do, they share common methodologies and data sets. In this study, we develop a new method for calculating the off-site LUEI for utility-scale solar energy for three different technologies: silicon photovoltaic (Si-PV), cadmium-telluride (CdTe) PV, and parabolic trough concentrated solar thermal. Our results indicate that the off-site LUEI is most likely 1% or less of the on-site LUEI for each technology. Although our results have some inherent uncertainties, they fall within an order of magnitude of other estimates in the literature. (C) 2015 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要