谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Investigation of a tissue engineered tendon model by PS-OCT

Bios(2010)

引用 3|浏览2
暂无评分
摘要
A few native tissues, such as tendon, skin and eye, possess highly organized collagenous matrices. In particular, the collagen fibers in tendon are organized into a hierarchical and unidirectional format, which gives rise to the high tissuespecific mechanical properties. This organization has been clearly revealed by a conventional polarized light microscope. The newly developed polarization-sensitive optical coherence tomography (PS-OCT) technique allows non-invasive visualization of birefringence images arising from orientated structures in a three dimensional format. Our previous studies of native tendon and tissue engineered tendon by PS-OCT demonstrate that tissue engineered tendon has a far less perfect collagen fiber organization than native tendon even under dynamic culture conditions. The purpose of this study is to use PS-OCT to assess the relationship between the degree of birefringence, collagen concentration and fiber density in model tendon tissues. The model tissue is constructed from an aligned collagen hydrogel and aligned polyester nanofibers. The effects of the diameter and density of the nanofibers and the collagen concentration in the model have been investigated. The alignment of collagen fibrils is induced by application of a high magnetic field during fibrillogenesis while aligned polyester nanofibers are manufactured using the electrospinning technique. It is found that the collagen concentration, the density and size of nanofiber bundles are the key parameters to produce birefringence in OCT images. The perfectly aligned collagen hydrogel with concentration as high as 4 mg/ml does not exhibit a birefringence image until the hydrogel has been compressed and concentrated. Aligned nanofiber bundles have demonstrated marginal birefringence in the absence of the collagen matrix. These studies enhance our understanding of how to control and optimize the parameters in tendon tissue engineering.
更多
查看译文
关键词
polarization,three dimensional,magnetism,visualization,matrices,skin,birefringence,polarized light,tissue engineering,nanofibers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要