谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Effect of Pseudopod Extensions on Neutrophil Hemodynamic Transport Near a Wall

Cellular and Molecular Bioengineering(2015)

引用 4|浏览5
暂无评分
摘要
During inflammation, circulating neutrophils roll on, and eventually tether to, the endothelial lining of blood vessels, allowing them to exit the bloodstream and enter the surrounding tissue to target pathogens. This process is mediated by the selectin family of adhesion proteins expressed by endothelial cells. Interestingly, only 10% of activated, migrating neutrophils transmigrate into the extravascular space; the other 90% detach from the wall and rejoin the blood flow. Neutrophils extrude pseudopods during the adhesion cascade; however, the transport behavior of this unique cell geometry has not been previously addressed. In this study, a three-dimensional computational model was applied to neutrophils with pseudopodial extensions to study the effect of cell shape on the hydrodynamic transport of neutrophils. The collision time, contact area, contact force, and collision frequency were analyzed as a function of pseudopod length. It was found that neutrophils experience more frequent collisions compared to prolate spheroids of equal volume and length. Longer pseudopods and lower shear rates increase the collision time integral contact area, a predictor of binding potential. Our results indicate that contact between the neutrophil and the vessel wall is found to be focused predominantly on the pseudopod tip.
更多
查看译文
关键词
Computational modeling,Hydrodynamics,Neutrophil,Pseudopod
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要