Scattering of light by sound on a nanoscale

Proceedings of SPIE(2004)

Cited 0|Views17
No score
Abstract
We report on light scattering experiments (Raman-Brillouin) in semiconductor quantum wells and quantum dots nanostructures. All measurements were performed under resonant excitation of the optical transitions involving confined electronic states. The scattered light was detected in the very low-frequency range around the Rayleigh line. We observe strong oscillations of the scattered intensity. Their period and relative amplitudes depend on the sample characteristics (size, density and spatial distribution of nano-objects). We show that such signal originates from interference effects due to the interaction between sound waves and the excited electronic density. By comparing simulated and measured spectra, we are able to extract, from the experiments, sample characteristics such as average size and size distribution of quantum dots. This optical sensing technique, namely Raman interferometry, is similar to the well-known X-ray diffraction technique, in the sense that it allows imaging of electronic states in the reciprocal space. Moreover, we show that Raman interferometry is a surface sensitive technique. By using quantum dots and quantum wells as Thz acoustic-detectors we are able to measure the reflection of sound waves at the sample surface. The surface characteristics (nano-scale roughness and oxidation) can be addressed using this method.
More
Translated text
Key words
Raman spectroscopy,acoustic phonons,quantum dots,quantum wells,nanostructures
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined