Event-triggered dual-mode predictive control for constrained nonlinear NCSs subject to disturbances and packet dropouts

INTERNATIONAL JOURNAL OF CONTROL(2023)

Cited 0|Views9
No score
Abstract
In this paper, we propose an event-triggered dual-mode predictive control strategy to deal with two-channel packet dropouts for discrete-time constrained nonlinear networked control systems. The main focus is on the construction of network compensation mechanisms and control algorithms. Firstly, two types of novel event generators are set, respectively, in sensor node and controller node to reduce resource consumption while preserving the desired system performance. In order to establish corresponding event-triggering conditions, two special states, successful transmitted states and reconstructed states, are introduced. Subsequently, a dual-mode control scheme, where the switch of modes depends on reconstructed states, is designed. The recursive feasibility of optimization problems is ensured by determining relationships between actual states and reconstructed states. By constructing actual control laws under two system modes, the stability property of closed-loop systems is guaranteed. Furthermore, effects of packet dropouts and disturbances on system performance are analyzed. At last, the efficiency of the proposed control strategy is illustrated by a cart-damper-spring simulation example.
More
Translated text
Key words
predictive control,nonlinear ncss subject,event-triggered,dual-mode
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined