Novel Cd-Sem Measurement Methodology For Complex Opced Patterns

PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY XXI(2014)

Cited 1|Views9
No score
Abstract
As design rules of lithography shrink: accuracy and precision of Critical Dimension (CD) and controllability of hard OPCed patterns are required in semiconductor production. Critical Dimension Scanning Electron Microscopes (CD SEM) are essential tools to confirm the quality of a mask such as CD control; CD uniformity and CD mean to target (MTT). Basically, Repeatability and Reproducibility (R&R) performance depends on the length of Region of Interest (ROI). Therefore, the measured CD can easily fluctuate in cases of extremely narrow regions of OPCed patterns. With that premise, it is very difficult to define MTT and uniformity of complex OPCed masks using the conventional SEM measurement approach.To overcome these difficulties, we evaluated Design Based Metrology (DBM) using Large Field Of View (LFOV) of CD-SEM. DBM can standardize measurement points and positions within LFOV based on the inflection/jog of OPCed patterns. Thus, DBM has realized several thousand multi ROI measurements with average CD. This new measurement technique can remove local CD errors and improved statistical methodology of the entire mask to enhance the representativeness of global CD uniformity. With this study we confirmed this new technique as a more reliable methodology in complex OPCed patterns compared to conventional technology. This paper summarizes the experiments of DBM with LFOV using various types of the patterns and compares them with current CD SEM methods.
More
Translated text
Key words
Photomask, Metrology, Critical Dimension, MTT, Uniformity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined