Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

Beiträge zur Tabakforschung / Contributions to Tobacco Research(2015)

引用 11|浏览2
暂无评分
摘要
AbstractAccurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration) and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C) by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014) 191-203]
更多
查看译文
关键词
machine smoking intensity,filter ventilation level,temperature distribution,gas-phase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要