16 Integrating Detectors for Photoacoustic Imaging

mag(2018)

引用 1|浏览13
暂无评分
摘要
The aim of medical imaging is an unerring diagnosis of diseases. Up to now several well established imaging modalities like e.g. computed tomography (CT), magnetic resonance tomography (MRT), single photon emission computed tomography (SPECT), positron emission tomography (PET) or ultrasound imaging (US) are known. Each imaging modality exhibits advantages and shortcomings. Computed tomography images the absorption of Xray quanta and is suitable for imaging bone structures, brain imaging, angiography (imaging of blood vessels) but involves ionising X-rays. The contrast mechanism in MRT is the relaxation time of excited protons and therefore this method images soft tissue and vessels (using a contrast agent with the drawback that it can trigger an allergic reaction of the human body) best. But MRT is an expensive technology; the huge magnetic field is not easy to shield and disqualifies some patients with old models of cardiac pacemakers and other metallic implants. A new imaging modality called magnetic particle imaging (MPI) which is just topic of research – uses also high magnetic fields for imaging. In this case the fields generated by magnetic nanoparticles are imaged. Nuclear techniques like SPECT or PET involve a radionuclide for imaging functional processes like the metabolic rate which is for instance higher in cancerous tissue than in healthy organs. The radionuclide is attached to a specific molecule and distributed in the body during the blood flow. The radioactive decay measured by adequate detectors shows the spatial distribution of the incorporated radioisotope which is higher in cancerous tissue compared to healthy tissue. Although these are important imaging modalities for cancer screening the radioactive substances which are incorporated in the body are one drawback apart from the high costs per examination. Nuclear imaging techniques only image functional processes but no anatomical structures for which reason other complimentary techniques (e.g. CT) are necessary. Ultrasound imaging displays the backscattering of ultrasonic waves on a boundary layer between different tissues or organs. Although US is a cheap and safe imaging modality, its contrast mechanism is only related to changes in acoustic properties. Since cancer arises from neoplastic cells, the properties of the cancer and the surrounding tissue are almost identical in terms of acoustic contrast during the first stages of cancer
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要