Carrier Dynamics of p-n Heterojunction Organic Photovoltaic Cells Analyzed by a Novel Graphic Representation of Impedance Spectroscopy

Advances in Materials Physics and Chemistry(2015)

引用 9|浏览1
暂无评分
摘要
The carrier dynamics in organic photovoltaic (OPV) cells were investigated by impedance spectroscopy. We introduced a novel impedance spectrum representation called dynamic modulus plot (DMP), which allowed us to observe the layer-to-layer carrier injection behavior graphically. In this work, the impedance responses were characterized in the N,N’-diphenyl-N,N’-di-m-tolyl- 4,4’-diaminobiphenyl (TPD)/C60 p-n heterostructured OPV cells against applied voltages. The dependence of impedance responses on the layer thickness revealed a constant internal electric field that disturbed the carrier transport within the OPV cells. We applied this technique to new donor materials, in which thiophene units were inserted to the center of TPD. By increasing the number of thiophene units in TPD the fill-factor (FF) improved from 33% to 59%, which increased the power conversion efficiency (PCE). Based on the DMP analysis, we assigned the improvement in device performance to the reduction of the internal electric field.
更多
查看译文
关键词
impedance spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要