谷歌浏览器插件
订阅小程序
在清言上使用

Core–shell microspheres delivering FGF-2 and BMP-2 in different release patterns for bone regeneration

JOURNAL OF MATERIALS CHEMISTRY B(2015)

引用 32|浏览4
暂无评分
摘要
Bone regeneration by applying fibroblast growth factor-2 (FGF-2) plus bone morphogenetic protein-2 (BMP-2) is considered advantageous over a single growth factor (GF) treatment because the spontaneous repair of bone defects is essentially regulated by a series of GFs, including FGF-2 and BMP2. However, the temporal interactions between FGF-2 and BMP-2 remain elusive and how to take full advantage of the interactions is a bottleneck in translating this dual-GF strategy into clinical applications. To compare the long-term effects of different temporal patterns of FGF-2 and BMP-2 on bone regeneration, a novel delivery system is needed. Herein, we report a type of PLLA core-PLGA shell double-walled microsphere. Different release patterns of FGF-2 and BMP-2 in the core and shell, respectively, were achieved due to different distributions of these two GFs. In vivo evaluations of different release patterns of dual GFs using a rat bone graft model suggested that a sequential delivery of FGF-2 and BMP-2 helped bridge and remodel the critical-sized bone grafts more efficiently than the other release patterns. More importantly, core-shell microspheres simultaneously and continuously releasing FGF-2 and BMP-2 resulted in the obvious resorption of grafted bone and bone non-union at 4 weeks. Consistently, the in vitro treatment of bovine bone sections by FGF-2 plus BMP-2 led to enhanced osteoclastogenesis compared to single GF treatments. The temporal organization of FGF-2 and BMP-2 by taking advantage of the core-shell microspheres will enable the development of more efficient devices for bone defects than existing delivery systems.
更多
查看译文
关键词
bone regeneration,core–shell microspheres
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要