Substrate-induced spin-torque-like signal in spin-torque ferromagnetic resonance measurement

PHYSICAL REVIEW APPLIED(2024)

引用 0|浏览4
暂无评分
摘要
Oxide thin films and interfaces with strong spin-orbit coupling have recently shown exceptionally high charge-to-spin conversion, making them potential spin-source materials for spintronics. Epitaxial strain engineering using oxide substrates with different lattice constants and symmetries has emerged as a mean to further enhance charge-to-spin conversion. However, high relative permittivity and dielectric loss of commonly used oxide substrates, such as SrTiO3, can cause significant current shunting in substrates at high frequency, which may strongly affect spin-torque measurement and potentially result in an inaccurate estimation of charge-to-spin conversion efficiency. In this study, we systematically evaluate the influence of various oxide substrates for the widely used spin-torque ferromagnetic resonance (ST-FMR) measurement. Surprisingly, we observed substantial spin-torque signals in samples comprising only ferromagnetic metal on oxide substrates with high relative permittivity (e.g., SrTiO3 and KTaO3), where negligible signal should be initially expected. Notably, this unexpected signal shows a strong correlation with the capacitive reactance of oxide substrates and the leakage rf current within the substrate. By revising the conventional ST-FMR analysis model, we attribute this phenomenon to a 90 degrees phase difference between the rf current flowing in the metal layer and in the substrate. We suggest that extra attention should be paid during the ST-FMR measurements, as this artifact could dominate over the real spin-orbit torque signal from high-resistivity spin-source materials grown on substrate with high relative permittivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要